Regression Level Set Estimation Via Cost-Sensitive Classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Level Set Estimation via Trees

Tree-structured partitions provide a natural framework for rapid and accurate extraction of the level sets of a multivariate function f from noisy data. In general, a level set is the set S on which f exceeds some critical value (e.g., S = {x : f(x) ≥ γ}). Boundaries of level sets typically constitute manifolds embedded in the high-dimensional observation space. The identification of these boun...

متن کامل

One-sided Support Vector Regression for Multiclass Cost-sensitive Classification

We propose a novel approach that reduces cost-sensitive classification to one-sided regression. The approach stores the cost information in the regression labels and encodes the minimum-cost prediction with the onesided loss. The simple approach is accompanied by a solid theoretical guarantee of error transformation, and can be used to cast any one-sided regression method as a costsensitive cla...

متن کامل

Cost-sensitive call classification

We present an efficient and effective method which extends the Boosting family of classifiers to allow the weighted classes. Typically classifiers do not treat individual classes separately. For most real world applications, this is not the case, not all classes have the same importance. The accuracy of a particular class can be more critical than others. In this paper we extend the mathematica...

متن کامل

Adversarial Cost-Sensitive Classification

In many classification settings, mistakes incur different application-dependent penalties based on the predicted and actual class labels. Costsensitive classifiers minimizing these penalties are needed. We propose a robust minimax approach for producing classifiers that directly minimize the cost of mistakes as a convex optimization problem. This is in contrast to previous methods that minimize...

متن کامل

Regression via Classification applied on software defect estimation

In this paper we apply Regression via Classification (RvC) to the problem of estimating the number of software defects. This approach apart from a certain number of faults, it also outputs an associated interval of values, within which this estimate lies with a certain confidence. RvC also allows the production of comprehensible models of software defects exploiting symbolic learning algorithms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2007

ISSN: 1053-587X

DOI: 10.1109/tsp.2007.893758